借宝地一角:显卡相关参数详解。
1、顶点着色单元顶点着色单元是显示芯片内部用来处理顶点(Vertex)信息并完成着色工作的并行处理单元。顶点着色单元决定了显卡的三角形处理和生成能力,所以也是衡量显示芯片性能特别是3D性能的重要参数。
顶点(Vertex)是图形学中的最基本元素,在三维空间中,每个顶点都拥有自己的坐标和颜色值等参数,三个顶点可以构成成一个三角形,而显卡所最终生成的立体画面则是由数量繁多的三角形构成的,而三角形数量的多少就决定了画面质量的高低,画面越真实越精美,就越需要数量更多的三角形来构成。顶点着色单元就是处理着些信息然后再送给像素渲染单元完成最后的贴图工作,最后再输出到显示器就成为我们所看到的3D画面。而显卡的顶点处理能力不足,就会导致要么降低画质,要么降低速度。
在相同的显示核心下,顶点着色单元的数量就决定了显卡的性能高低,数量越多也就意味着性能越高,例如具有6个顶点着色单元的GeForce 6800GT就要比只具有5个顶点着色单元的GeForce 6800性能高:但在不同的显示核心架构下顶点着色单元的数量多则并不一定就意味着性能越高,这还要取决于顶点着色单元的效率以及显卡的其它参数,例如具有4个顶点着色单元的Radeon 9800Pro其性能还不如只具有3个顶点着色单元的GeForce 6600GT。
2、适用类型
台式机显卡—普通显卡
普通显卡就是普通台式机内所采用的显卡产品,也就是DIY市场内最为常见的显卡产品。之所以叫它普通显卡是相对于应用于图形工作站上的专业显卡产品而言的,。普通显卡更多注重于民用级应用,更强调的是在用户能接受的价位下提供更强大的娱乐、办公、游戏、多媒体等方面的性能;而专业显卡则强调的是强大的性能、稳定性、绘图的精确等方面。目前设计制造普通显卡显示芯片的厂家主要有NVIDIA、ATI、SIS等,但主流的产品都是采用NVIDIA、ATI的显示芯片。
工作站显卡—专业显示卡
专业显示卡是指应用于图形工作站上的显示卡,它是图形工作站的核心。从某种程度上来说,在图形工作站上它的重要性甚至超过了CPU。与针对游戏、娱乐和办公市场为主的消费类显卡相比,专业显示卡主要针对的是三维动画软件(如3DS Max、Maya、Softimage|3D等)、渲染软件(如LightScape、3DS VIZ等)、CAD软件(如AutoCAD、Pro/Engineer、Unigraphics、SolidWorks等)、模型设计(如Rhino)以及部分科学应用等专业应用市场。专业显卡针对这些专业图形图像软件进行必要的优化,都有着极佳的兼容性。
笔记本显卡—移动显示卡
笔记本显卡是指笔记本上的显卡。笔记本受发热量、体积的限制,使用芯片组集成显卡的比例很高,但是也有一些独立的显示芯片,满足人们对3D画面的追求。笔记本显卡有点像普通显卡的简化版本,为了减少发热量,其指标比台式机显卡低一些,此外还会支持一些节能技术。笔记本显卡和台式机显卡一样注重于民用级应用,更强调的是在用户能接受的价位下提供更强大的娱乐、办公、游戏、多媒体等方面的性能。笔记本显卡的特征是显存和显示核心放在一起被封装。
普通家用显卡主要针对Direct 3D加速,而专业显示卡则是针对OpenGL来加速的。OpenGL(Open Graphics Library开放图形库)是目前科学和工程绘图领域无可争辩的图形技术标准。OpenGL最初由SGI公司提出,在Win95、98及Windows NT/Windows 2000中均得到支持。OpenGL注重于快速绘制2D和3D物体用于CAD、仿真、科学应用可视化和照片级真实感的游戏视景中。它是一个开放的三维图形软件包,它独立于窗口系统和操作系统,能十分方便地在各平台间移植,它具有开放性、独立性和兼容性三大特点。专业显示卡在多边形产生速度或是像素填充率等指标上都要优于普通显卡,同时在调整驱动程序以及提供绘图的精确性方面也要强很多。与普通显卡注重的生产成本不同,专业显卡更强调性能以及稳定性,而且受限于用户群体较少,产量很小,因此专业显卡的价格都极为昂贵,不是普通用户所能承受的。此外三种类型的显卡有一定较差,有些台式机显卡完全可以用于工作站,而有些笔记本显卡也被用于台式机;更重要的是,有些工作站显卡还满足移动的要求,因此也有人称其为移动工作站显卡。
3、开发代号
所谓开发代号就是显示芯片制造商为了便于显示芯片在设计、生产、销售方面的管理和驱动架构的统一而对一个系列的显示芯片给出的相应的基本的代号。不同的显示芯片都有相应的开发代号。
开发代号最突出的作用是降低显示芯片制造商的成本、丰富产品线以及实现驱动程序的统一。一般来说,显示芯片制造商可以利用一个基本开发代号再通过控制渲染管线数量、顶点着色单元数量、显存类型、显存位宽、核心和显存频率、所支持的技术特性等方面来衍生出一系列的显示芯片来满足不同的性能、价格、市场等不同的定位,还可以把制造过程中具有部分瑕疵的高端显示芯片产品通过屏蔽管线等方法处理成为完全合格的相应低端的显示芯片产品出售,从而大幅度降低设计和制造的难度和成本,丰富自己的产品线。例如,NVIDIA从NV40就先后衍生出了面向零售市场的Geforce 6800、Geforce 6800GT、Geforce 6800Ultra、Geforce 6800LE、Geforce 6800XT以及面向OEM市场的Geforce 6800GTO等显示芯片产品;而ATI也从R300衍生出了Radeon 9700、Radeon 9700Pro、Radeon 9500、Radeon 9500Pro等显示芯片产品。在驱动程序方面,同一种开发代号的显示芯片可以使用相同的驱动程序,这为显示芯片制造商编写驱动程序以及消费者使用显卡都提供了方便。
同一种开发代号的显示芯片的渲染架构以及所支持的技术特性是基本上相同的,而且所采用的制程也相同,所以开发代号是判断显卡性能和档次的重要参数。
4、制造工艺
显示芯片的制造工艺与CPU一样,也是用微米来衡量其加工精度的。制造工艺的提高,意味着显示芯片的体积将更小、集成度更高,可以容纳更多的晶体管,性能会更加强大,功耗也会降低。
和中央处理器一样,显示卡的核心芯片,也是在硅晶片上制成的。采用更高的制造工艺,对于显示核心频率和显示卡集成度的提高都是至关重要的。而且重要的是制程工艺的提高可以有效的降低显卡芯片的生产成本。目前的显示芯片制造商中,NVIDIA公司已全面采用了0.13微米的制造工艺,就是其FX5900显示核心之所以能集成一亿两千五百万个晶体管的根本原因。而ATI公司主要还是在使用0.15微米的制造工艺,比如其高端的镭9800XT和镭9800 Pro显卡,部分产品采用更先进的0.13微米制造工艺,比如其镭9600显卡。
微电子技术的发展与进步,主要是靠工艺技术的不断改进,使得器件的特征尺寸不断缩小,从而集成度不断提高,功耗降低,器件性能得到提高。显示芯片制造工艺在1995年以后,从0.5微米、0.35微米、0.25微米、0.18微米、0.15微米、0.13微米、0.11微米一直发展到目前最新的90纳米,而未来则会以80纳米作为一个过渡,然后进一步发展到65纳米。总的说来,显示芯片在制造工艺方面基本上总是要落后于CPU的制造工艺一个时代,例如CPU采用0.13微米工艺时显示芯片还在采用0.18微米工艺和0.15微米工艺,CPU采用90纳米工艺时显示芯片则还在使用0.13微米工艺和0.11微米工艺,而现在CPU已经采用65纳米工艺了而显示芯片则刚进入90纳米工艺。
提高显示芯片的制造工艺具有重大的意义,因为更先进的制造工艺会在显示芯片内部集成更多的晶体管,使显示芯片实现更高的性能、支持更多的特效;更先进的制造工艺会使显示芯片的核心面积进一步减小,也就是说在相同面积的晶圆上可以制造出更多的显示芯片产品,直接降低了显示芯片的产品成本,从而最终会降低显卡的销售价格使广大消费者得利;更先进的制造工艺还会减少显示芯片的功耗,从而减少其发热量,解决显示芯片核心频率提升的障碍.....显示芯片自身的发展历史也充分的说明了这一点,先进的制造工艺使显卡的性能和支持的特效不断增强,而价格则不断下滑,例如售价为1500左右的中端显卡GeForce 7600GT其性能就足以击败上一代售价为5000元左右的顶级显卡GeForce 6800Ultra。
采用更低制造工艺的显示芯片也不是一定代表有更高的性能,因为显示芯片设计思路也各不同相同,并不能单纯已制造工艺来衡量其性能。最明显的就是NVDIVA的GeForce FX5950和ATI的Radeon 9800XT,9800XT采用0.15微米制造工艺,而FX5950采用更为先进的0.13微米制造工艺,但在性能表现上,Radeon 9800XT则要略胜一筹。
5、核心位宽
显示芯片位宽是指显示芯片内部数据总线的位宽,也就是显示芯片内部所采用的数据传输位数,目前主流的显示芯片基本都采用了256位的位宽,采用更大的位宽意味着在数据传输速度不变的情况,瞬间所能传输的数据量越大。就好比是不同口径的阀门,在水流速度一定的情况下,口径大的能提供更大的出水量。显示芯片位宽就是显示芯片内部总线的带宽,带宽越大,可以提供的计算能力和数据吞吐能力也越快,是决定显示芯片级别的重要数据之一。目前已推出最大显示芯片位宽是512位,那是由Matrox(幻日)公司推出的Parhelia-512显卡,这是世界上第一颗具有512位宽的显示芯片。而目前市场中所有的主流显示芯片,包括NVIDIA公司的GeForce系列显卡,ATI公司的Radeon系列等,全部都采用256位的位宽。这两家目前世界上最大的显示芯片制造公司也将在未来几年内采用512位宽。
显示芯片位宽增加并不代表该芯片性能更强,因为显示芯片集成度相当高,设计、制造都需要很高的技术能力,单纯的强调显示芯片位宽并没有多大意义,只有在其它部件、芯片设计、制造工艺等方面都完全配合的情况下,显示芯片位宽的作用才能得到体现。
6、显卡位宽
显存位宽是显存在一个时钟周期内所能传送数据的位数,位数越大则瞬间所能传输的数据量越大,这是显存的重要参数之一。目前市场上的显存位宽有64位、128位和256位三种,人们习惯上叫的64位显卡、128位显卡和256位显卡就是指其相应的显存位宽。显存位宽越高,性能越好价格也就越高,因此256位宽的显存更多应用于高端显卡,而主流显卡基本都采用128位显存。
大家知道显存带宽=显存频率X显存位宽/8,那么在显存频率相当的情况下,显存位宽将决定显存带宽的大小。比如说同样显存频率为500MHz的128位和256位显存,那么它俩的显存带宽将分别为:128位=500MHz*128∕8=8GB/s,而256位=500MHz*256∕8=16GB/s,是128位的2倍,可见显存位宽在显存数据中的重要性。
显卡的显存是由一块块的显存芯片构成的,显存总位宽同样也是由显存颗粒的位宽组成,。显存位宽=显存颗粒位宽×显存颗粒数。显存颗粒上都带有相关厂家的内存编号,可以去网上查找其编号,就能了解其位宽,再乘以显存颗粒数,就能得到显卡的位宽。这是最为准确的方法,但施行起来较为麻烦。
7、标配显存类型
显存是显卡上的关键核心部件之一,它的优劣和容量大小会直接关系到显卡的最终性能表现。可以说显示芯片决定了显卡所能提供的功能和其基本性能,而显卡性能的发挥则很大程度上取决于显存。无论显示芯片的性能如何出众,最终其性能都要通过配套的显存来发挥。
显存,也被叫做帧缓存,它的作用是用来存储显卡芯片处理过或者即将提取的渲染数据。如同计算机的内存一样,显存是用来存储要处理的图形信息的部件。我们在显示屏上看到的画面是由一个个的像素点构成的,而每个像素点都以4至32甚至64位的数据来控制它的亮度和色彩,这些数据必须通过显存来保存,再交由显示芯片和CPU调配,最后把运算结果转化为图形输出到显示器上。
显卡的工作原理是:在显卡开始工作(图形渲染建模)前,通常是把所需要的材质和纹理数据传送到显存里面,开始工作时候(进行建模渲染),这些数据通过AGP总线进行传输,显示芯片将通过AGP总线提取存储在显存里面的数据,除了建模渲染数据外还有大量的顶点数据和工作指令流需要进行交换,这些数据通过RAMDAC转换为模拟信号输出到显示端,最终就是我们看见的图像。
作为显示卡的重要组成部分,显存一直随着显示芯片的发展而逐步改变着。从早期的EDORAM、MDRAM、SDRAM、SGRAM、VRAM、WRAM等到今天广泛采用的DDR SDRAM显存经历了很多代的进步。
目前市场中所采用的显存类型主要有SDRAM,DDR SDRAM,DDR SGRAM三种。SDRAM颗粒目前主要应用在低端显卡上,频率一般不超过200MHz,在价格和性能上它比DDR都没有什么优势,因此逐渐被DDR取代。DDR SDRAM是市场中的主流(包括DDR2和DDR3),一方面是工艺的成熟,批量的生产导致成本下跌,使得它的价格便宜;另一方面它能提供较高的工作频率,带来优异的数据处理性能。至于DDR SGRAM,它是显卡厂商特别针对绘图者需求,为了加强图形的存取处理以及绘图控制效率,从同步动态随机存取内存(SDRAM)所改良而得的产品。SGRAM允许以方块 (Blocks) 为单位个别修改或者存取内存中的资料,它能够与中央处理器(CPU)同步工作,可以减少内存读取次数,增加绘图控制器的效率,尽管它稳定性不错,而且性能表现也很好,但是它的超频性能很差劲,目前也极少使用。
8、核心频率
显示芯片的核心频率是指显示核心的工作频率,有点类似与CPU的工作主频,其工作频率在一定程度上可以反映出显示核心的性能。但显卡的性能是由核心频率、显存、像素管线、像素填充率等等多方面的情况所决定的,因此在显示核心不同的情况下,核心频率高并不代表此显卡性能强劲。比如9600PRO的核心频率达到了400MHz,要比9800PRO的380MHz高,但在性能上9800PRO绝对要强于9600PRO。在同样级别的芯片中,核心频率高的则性能要强一些,提高核心频率就是显卡超频的方法之一。显示芯片主流的只有ATI和NVIDIA两家,两家都提供显示核心给第三方的厂商,在同样的显示核心下,部分厂商会适当提高其产品的显示核心频率,使其工作在高于显示核心固定的频率上以达到更高的性能。
9、显存频率
显存频率是指默认情况下,该显存在显卡上工作时的频率,以MHz(兆赫兹)为单位。显存频率一定程度上反应着该显存的速度。显存频率随着显存的类型、性能的不同而不同,SDRAM显存一般都工作在较低的频率上,一般就是133MHz和166MHz,此种频率早已无法满足现在显卡的需求。DDR SDRAM显存则能提供较高的显存频率,主要在中低端显卡上使用,DDR2显存由于成本高并且性能一般,因此使用量不大。DDR3显存是目前高端显卡采用最为广泛的显存类型。不同显存能提供的显存频率也差异很大,主要有400MHz、500MHz、600MHz、650MHz等,高端产品中还有800MHz、1200MHz、1600MHz,甚至更高。
显存频率与显存时钟周期是相关的,二者成倒数关系,也就是显存频率=1/显存时钟周期。如果是SDRAM显存,其时钟周期为6ns,那么它的显存频率就为1/6ns=166 MHz。而对于DDR SDRAM或者DDR2、DDR3,其时钟周期为6ns,那么它的显存频率就为1/6ns=166 MHz,但要了解的是这是DDR SDRAM的实际频率,而不是我们平时所说的DDR显存频率。因为DDR在时钟上升期和下降期都进行数据传输,其一个周期传输两次数据,相当于SDRAM频率的二倍。习惯上称呼的DDR频率是其等效频率,是在其实际工作频率上乘以2,就得到了等效频率。因此6ns的DDR显存,其显存频率为1/6ns*2=333 MHz。具体情况可以看下边关于各种显存的介绍。
但要明白的是显卡制造时,厂商设定了显存实际工作频率,而实际工作频率不一定等于显存最大频率。此类情况现在较为常见,如显存最大能工作在650 MHz,而制造时显卡工作频率被设定为550 MHz,此时显存就存在一定的超频空间。这也就是目前厂商惯用的方法,显卡以超频为卖点。此外,用于显卡的显存,虽然和主板用的内存同样叫DDR、DDR2甚至DDR3,但是由于规范参数差异较大,不能通用,因此也可以称显存为GDDR、GDDR2、GDDR3。
10、显存带宽
显存带宽是指显示芯片与显存之间的数据传输速率,它以字节/秒为单位。显存带宽是决定显卡性能和速度最重要的因素之一。要得到精细(高分辨率)、色彩逼真(32位真彩)、流畅(高刷新速度)的3D画面,就必须要求显卡具有大显存带宽。目前显示芯片的性能已达到很高的程度,其处理能力是很强的,只有大显存带宽才能保障其足够的数据输入和输出。随着多媒体、3D游戏对硬件的要求越来越高,在高分辨率、32位真彩和高刷新率的3D画面面前,相对于GPU,较低的显存带宽已经成为制约显卡性能的瓶颈。显存带宽是目前决定显卡图形性能和速度的重要因素之一。
显存带宽的计算公式为:显存带宽=工作频率×显存位宽/8。目前大多中低端的显卡都能提供6.4GB/s、8.0GB/s的显存带宽,而对于高端的显卡产品则提供超过20GB/s的显存带宽。在条件允许的情况下,尽可能购买显存带宽大的显卡,这是一个选择的关键。
11、渲染管线
渲染管线也称为渲染流水线,是显示芯片内部处理图形信号相互独立的的并行处理单元。在某种程度上可以把渲染管线比喻为工厂里面常见的各种生产流水线,工厂里的生产流水线是为了提高产品的生产能力和效率,而渲染管线则是提高显卡的工作能力和效率。
渲染管线的数量一般是以 像素渲染流水线的数量×每管线的纹理单元数量 来表示。例如,GeForce 6800Ultra的渲染管线是16×1,就表示其具有16条像素渲染流水线,每管线具有1个纹理单元;GeForce4 MX440的渲染管线是2×2,就表示其具有2条像素渲染流水线,每管线具有2个纹理单元等等,其余表示方式以此类推。
渲染管线的数量是决定显示芯片性能和档次的最重要的参数之一,在相同的显卡核心频率下,更多的渲染管线也就意味着更大的像素填充率和纹理填充率,从显卡的渲染管线数量上可以大致判断出显卡的性能高低档次。但显卡性能并不仅仅只是取决于渲染管线的数量,同时还取决于显示核心架构、渲染管线的的执行效率、顶点着色单元的数量以及显卡的核心频率和显存频率等等方面。一般来说在相同的显示核心架构下,渲染管线越多也就意味着性能越高,例如16×1架构的GeForce 6800GT其性能要强于12×1架构的GeForce 6800,就象工厂里的采用相同技术的2条生产流水线的生产能力和效率要强于1条生产流水线那样;而在不同的显示核心架构下,渲染管线的数量多就并不意味着性能更好,例如4×2架构的GeForce2 GTS其性能就不如2×2架构的GeForce4 MX440,就象工厂里的采用了先进技术的1条流水线的生产能力和效率反而还要强于只采用了老技术的2条生产流水线那样。
12、显卡接口
显卡接口是指显卡与主板连接所采用的接口种类。显卡的接口决定着显卡与系统之间数据传输的最大带宽,也就是瞬间所能传输的最大数据量。不同的接口决定着主板是否能够使用此显卡,只有在主板上有相应接口的情况下,显卡才能使用,并且不同的接口能为显卡带来不同的性能。
目前各种3D游戏和软件对显卡的要求越来越高,主板和显卡之间需要交换的数据量也越来越大,过去的显卡接口早已不能满足这样大量的数据交换,因此通常主板上都带有专门插显卡的插槽。假如显卡接口的传输速度不能满足显卡的需求,显卡的性能就会受到巨大的限制,再好的显卡也无法发挥。显卡发展至今主要出现过ISA、PCI、AGP、PCI Express等几种接口,所能提供的数据带宽依次增加。其中2004年推出的PCI Express接口已经成为主流,以解决显卡与系统数据传输的瓶颈问题,而ISA、PCI接口的显卡已经基本被淘汰。
13、RAMDAC
RAMDAC是Random Access Memory Digital/Analog Convertor的缩写,即随机存取内存数字~模拟转换器。RAMDAC作用是将显存中的数字信号转换为显示器能够显示出来的模拟信号,其转换速率以MHz表示。
计算机中处理数据的过程其实就是将事物数字化的过程,所有的事物将被处理成 0和 1两个数,而后不断进行累加计算。图形加速卡也是靠这些0和1对每一个象素进行颜色、深度、亮度等各种处理。显卡生成的信号都是以数字来表示的,但是所有的CRT显示器都是以模拟方式进行工作的,数字信号无法被识别,这就必须有相应的设备将数字信号转换为模拟信号。而RAMDAC就是显卡中将数字信号转换为模拟信号的设备。
RAMDAC的转换速率以MHz表示,它决定了刷新频率的高低(与显示器的“带宽”意义近似)。其工作速度越高,频带越宽,高分辨率时的画面质量越好.该数值决定了在足够的显存下,显卡最高支持的分辨率和刷新率。如果要在1024×768的分辨率下达到85Hz的分辨率,RAMDAC的速率至少是1024×768×85×1.344÷1.06≈90MHz。
目前主流的显卡RAMDAC都能达到350MHz和400MHz,已足以满足和超过目前大多数显示器所能提供的分辨率和刷新率。
14、DirectX版本
DirectX并不是一个单纯的图形API,它是由微软公司开发的用途广泛的API,它包含有Direct Graphics(Direct 3D+Direct Draw)、Direct Input、Direct Play、Direct Sound、Direct Show、Direct Setup、Direct Media Objects等多个组件,它提供了一整套的多媒体接口方案。只是其在3D图形方面的优秀表现,让它的其它方面显得暗淡无光。DirectX开发之初是为了弥补Windows 3.1系统对图形、声音处理能力的不足,而今已发展成为对整个多媒体系统的各个方面都有决定性影响的接口。
DirectX 5.0
微软公司并没有推出DirectX 4.0,而是直接推出了DirectX 5.0。此版本对Direct3D做出了很大的改动,加入了雾化效果、Alpha混合等3D特效,使3D游戏中的空间感和真实感得以增强,还加入了S3的纹理压缩技术。同时,DirectX 5.0在其它各组件方面也有加强,在声卡、游戏控制器方面均做了改进,支持了更多的设备。因此,DirectX发展到DirectX 5.0才真正走向了成熟。此时的DirectX性能完全不逊色于其它3D API,而且大有后来居上之势。
DirectX 6.0
DirectX 6.0推出时,其最大的竞争对手之一Glide,已逐步走向了没落,而DirectX则得到了大多数厂商的认可。DirectX 6.0中加入了双线性过滤、三线性过滤等优化3D图像质量的技术,游戏中的3D技术逐渐走入成熟阶段。
DirectX 7.0
DirectX 7.0最大的特色就是支持T&L,中文名称是“坐标转换和光源”。3D游戏中的任何一个物体都有一个坐标,当此物体运动时,它的坐标发生变化,这指的就是坐标转换;3D游戏中除了场景+物体还需要灯光,没有灯光就没有3D物体的表现,无论是实时3D游戏还是3D影像渲染,加上灯光的3D渲染是最消耗资源的。虽然OpenGL中已有相关技术,但此前从未在民用级硬件中出现。在T&L问世之前,位置转换和灯光都需要CPU来计算,CPU速度越快,游戏表现越流畅。使用了T&L功能后,这两种效果的计算用显示卡的GPU来计算,这样就可以把CPU从繁忙的劳动中解脱出来。换句话说,拥有T&L显示卡,使用DirectX 7.0,即使没有高速的CPU,同样能流畅的跑3D游戏。
DirectX 8.0
DirectX 8.0的推出引发了一场显卡革命,它首次引入了“像素渲染”概念,同时具备像素渲染引擎(Pixel Shader)与顶点渲染引擎(Vertex Shader),反映在特效上就是动态光影效果。同硬件T&L仅仅实现的固定光影转换相比,VS和PS单元的灵活性更大,它使GPU真正成为了可编程的处理器。这意味着程序员可通过它们实现3D场景构建的难度大大降低。通过VS和PS的渲染,可以很容易的宁造出真实的水面动态波纹光影效果。此时DirectX的权威地位终于建成。
DirectX 9.0
2002年底,微软发布DirectX9.0。DirectX 9中PS单元的渲染精度已达到浮点精度,传统的硬件T&L单元也被取消。全新的VertexShader(顶点着色引擎)编程将比以前复杂得多,新的VertexShader标准增加了流程控制,更多的常量,每个程序的着色指令增加到了1024条。
PS 2.0具备完全可编程的架构,能对纹理效果即时演算、动态纹理贴图,还不占用显存,理论上对材质贴图的分辨率的精度提高无限多;另外PS1.4只能支持28个硬件指令,同时操作6个材质,而PS2.0却可以支持160个硬件指令,同时操作16个材质数量,新的高精度浮点数据规格可以使用多重纹理贴图,可操作的指令数可以任意长,电影级别的显示效果轻而易举的实现。
VS 2.0通过增加Vertex程序的灵活性,显著的提高了老版本(DirectX8)的VS性能,新的控制指令,可以用通用的程序代替以前专用的单独着色程序,效率提高许多倍;增加循环操作指令,减少工作时间,提高处理效率;扩展着色指令个数,从128个提升到256个。
增加对浮点数据的处理功能,以前只能对整数进行处理,这样提高渲染精度,使最终处理的色彩格式达到电影级别。突破了以前限制PC图形图象质量在数学上的精度障碍,它的每条渲染流水线都升级为128位浮点颜色,让游戏程序设计师们更容易更轻松的创造出更漂亮的效果,让程序员编程更容易。
DirectX 9.0c
与过去的DirectX 9.0b和Shader Model 2.0相比较,DirectX 9.0c最大的改进,便是引入了对Shader Model 3.0(包括Pixel Shader 3.0 和Vertex Shader 3.0两个着色语言规范)的全面支持。举例来说,DirectX 9.0b的Shader Model 2.0所支持的Vertex Shader最大指令数仅为256个,Pixel Shader最大指令数更是只有96个。而在最新的Shader Model 3.0中,Vertex Shader和Pixel Shader的最大指令数都大幅上升至65535个,全新的动态程序流控制、 位移贴图、多渲染目标(MRT)、次表面散射 Subsurface scattering、柔和阴影 Soft shadows、环境和地面阴影 Environmental and ground shadows、全局照明 (Global illumination)等新技术特性,使得GeForce 6、GeForce7系列以及Radeon X1000系列立刻为新一代游戏以及具备无比真实感、幻想般的复杂的数字世界和逼真的角色在影视品质的环境中活动提供强大动力。
因此DirectX 9.0c和Shader Model 3.0标准的推出,可以说是DirectX发展历程中的重要转折点。在DirectX 9.0c中,Shader Model 3.0除了取消指令数限制和加入位移贴图等新特性之外,更多的特性都是在解决游戏的执行效率和品质上下功夫,Shader Model 3.0诞生之后,人们对待游戏的态度也开始从过去单纯地追求速度,转变到游戏画质和运行速度两者兼顾。因此Shader Model 3.0对游戏产业的影响可谓深远。
15、显示芯片
显示芯片是显卡的核心芯片,它的性能好坏直接决定了显卡性能的好坏,它的主要任务就是处理系统输入的视频信息并将其进行构建、渲染等工作。显示主芯片的性能直接决定了显示卡性能的高低。不同的显示芯片,不论从内部结构还是其性能,都存在着差异,而其价格差别也很大。显示芯片在显卡中的地位,就相当于电脑中CPU的地位,是整个显卡的核心。因为显示芯片的复杂性,目前设计、制造显示芯片的厂家只有NVIDIA、ATI、SIS、3DLabs等公司。家用娱乐性显卡都采用单芯片设计的显示芯片,而在部分专业的工作站显卡上有采用多个显示芯片组合的方式。 DX都有10.1了~~~~~~~~ 原帖由 eric007 于 2008-10-9 14:36 发表 https://www.slit.cn/images/common/back.gif
DX都有10.1了~~~~~~~~
是的,看到了好几款,正在选择。 这文章过时了。。。 DX10 以后就没有 渲染管线 了。也没有顶点着色单元了。。。
出现了流处理器。。现在显卡是 3个频率了。。。 原帖由 sky2816 于 2008-10-9 15:25 发表 https://www.slit.cn/images/common/back.gif
这文章过时了。。。 DX10 以后就没有 渲染管线 了。也没有顶点着色单元了。。。
出现了流处理器。。现在显卡是 3个频率了。。。
对显卡参数的具体含义实在不懂。
过时的信息也先了解一下了。
最后还是选了一款七彩虹的显卡。
用用试试再说吧。:em61: 七彩虹的,你也敢用:em61: :em61: :em61: ~~~~~~~~~~ 阿版不要取笑人家了,美女这么好学已经着实可敬了!:em61: 现在比较常用的显卡是什么型号什么参数啊?
页:
[1]